LECTURE SUMMARY 11.2

FRIDAY, JULY 22, 2016

Matrices Method for Solving Systems of Linear Homogeneous Differential Equations

1. How to transfer a system of linear homogeneous differential equations to a matrix form.
2. Theorem: Suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct real eigenvalues of the $n \times n$ matrix A with associated eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, respectively. Then the general solution of $z^{\prime}=A z$ is given by

$$
z=C_{1} e^{\lambda_{1} t} v_{1}+C_{2} e^{\lambda_{2} t} v_{2}+\ldots+C_{n} e^{\lambda_{n} t} v_{n}
$$

3. Examples.

Suggestion: Do exercises as many as possible.

