LECTURE SUMMARY 11.2

FRIDAY, JULY 22, 2016

MATRICES METHOD FOR SOLVING SYSTEMS OF LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

1. How to transfer a system of linear homogeneous differential equations to a matrix form.

2. Theorem: Suppose that $\lambda_1, \lambda_2, ..., \lambda_n$ are distinct real eigenvalues of the $n \times n$ matrix A with associated eigenvectors $v_1, v_2, ..., v_n$, respectively. Then the general solution of z' = Az is given by $z = C_1 e^{\lambda_1 t} v_1 + C_2 e^{\lambda_2 t} v_2 + ... + C_n e^{\lambda_n t} v_n$

3. Examples.

Suggestion: Do exercises as many as possible.